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Abstract: Rover traverse distances are increasing at a 

faster rate than downlink capacity is increasing. As this trend 
continues, the quantity of data that can be returned to Earth 
per meter traversed is reduced. The capacity of the rover to 
collect data, however, remains high. This circumstance leads 
to an opportunity to increase mission science return by care-
fully selecting the data with the highest science interest for 
downlink. We have developed an onboard science analysis 
technology for increasing science return from missions. Our 
technology evaluates the geologic data gathered by the rover. 
This analysis is used to prioritize the data for transmission, 
so that the data with the highest science value is transmitted 
to Earth. In addition, the onboard analysis results are used to 
identify additional science gathering opportunities. A plan-
ning and scheduling component of the system enables the 
rover to take advantage of the identified science opportunity. 

Introduction: With the continued expansion of planetary 
exploration, future missions will cause an increase in the vol-
ume of data that can be acquired for transmission to Earth via 
the Deep Space Network (DSN). Missions will have to make 
critical decisions regarding the quantity and quality of the 
downlink data. Although the DSN’s transmission capability 
improves every year, the DSN cannot keep pace with the 
vast number of missions it must service. New methods must 
be developed to maximize the science return for the available 
bandwidth. We are developing an approach to counteract this 
transmission limitation by improving the quality of useful 
information conveyed per bit. We have developed onboard 
analysis methods to autonomously prioritize data for 
downlink, thus maximizing the science return for the available 
bandwidth. By carefully selecting key data for transmission, 
the quality of data returned is increased. Selecting the most 
interesting data requires encapsulation of characteristics of 
data with high science value in a form that can be analyzed 
and evaluated onboard. The spacecraft must have the capabil-
ity of automatically recognizing data that contains informa-
tion about targets with high science interest. Since images are 
among the highest bandwidth data that a rover collects, im-
ages represent one of the greatest opportunities for data pri-
oritization. 

Methodology: To assess and subsequently prioritize the 
scientific value of a set of collected images, we must first 
extract the information found within the images. A geologist 
in the field would extract the information from a site by iden-
tifying geologic features including the albedo, texture, shape, 
size, color, and arrangement of rocks, and features of the 
topography such as layers in a cliff face. Our system begins 
by first evaluating each image and locating the rocks within it. 
Next, we extract the properties of the rocks, including albedo, 
texture and shape features. These features are assigned a sci-

ence value, and the importance of the image is evaluated 
based on these values as compared to the features extracted 
from rocks identified in other images.  

Rock Classification: Images with interesting features, 
such as rocks with unusual shapes or textures, should be 
ranked higher than images without distinctive features. We 
have developed three different prioritization methods that 
use the extracted rock features to rank the rocks in terms of 
scientific importance. Once the rocks are prioritized, the 
images containing the rocks are ranked based on the rocks 
contained within them.  

Extraction: Our technique for locating rocks is based on 
finding objects above the ground plane. We begin by deter-
mining the ground plane from the stereo range data, which is 
already calculated for navigation purposes. We then produce 
a height image, in which the value of each pixel represents the 
elevation of the point above the ground plane. Level contours 
in the height image are calculated and then these contours are 
connected from peaks to the ground plane to identify the 
rocks [1].  

Rock properties  including albedo, visual texture and 
shape, are then extracted from the rocks identified. We meas-
ure albedo, an indicator of the reflectance properties of a 
surface, by computing the average gray-scale value of the 
pixels that comprise the image of the rock. The reflectance 
properties of a rock provide information about its mineralogi-
cal composition. The second rock property extracted is vis-
ual texture . Visual texture can provide valuable clues to both 
the mineral composition and geological history of a rock. 
Visual texture can be described by gray-scale intensity varia-
tions at different orientations and spatial frequencies within 
the image. We measure texture using a bank of Gabor filters 
[2, 3]. Gabor filters are scale and orientation specific, thus the 
results of convolving an image with these filters can be suc-
cessfully used to discriminate between different textures. 
Another important and geologically useful feature of rocks is 
their inherent shape . For example, a rock that is highly 
rounded may have undergone fluvial processing and traveled 
far from its source. Conversely, a rock that is highly angular 
is likely to be close to its source and to have undergone 
minimal secondary processing. We begin by fitting an ellipse 
to the boundary points of the identified rock in the image [4]. 
Our first shape measure is the eccentricity of this ellipse. Our 
second measure is the error between the boundary points and 
the ellipse.  The third and final measure is angularity, which 
is measured as the standard deviation of the angle of the edge 
at each boundary point.  

Prioritization: The features extracted from a group of 
images are then used to rank the images using the three dis-
tinct prioritization algorithms. The first technique recognizes 
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pre-specified target signatures that have been identified by 
the science team as data of high interest. The second tech-
nique, novelty detection, identifies unusual signatures that do 
not conform to the statistical norm for the region. The last 
method, known as representative sampling, prioritizes data 
for downlink by ensuring that representative rocks of the 
traversed region are returned.  

Target Signature: We have implemented a method for 
enabling scientists to efficiently and easily stipulate the value 
and importance to assign to each feature. Rocks are then pri-
oritized as a function of the distance of their extracted feature 
vector from the specified weighted feature vector. Scientists 
are given two ways to set the target signatures that will de-
termine how the rocks are ranked. In the first method, the 
scientist may, for example, chose to prioritize rocks based on 
two aspects of their shape, such as eccentricity and ellipse 
fit. The second manner in which scientists can specify a tar-
get signature is by selecting a rock with interesting properties 
from the set of already identified rocks. Rocks that resemble 
this particular rock in the selected properties are given a high 
priority.  

Novelty Detection: We have developed three methods for 
detecting and prioritizing novel rocks, representing the three 
dominant flavors of machine learning approaches to novelty 
detection: distance-based, probability-based (i.e. "genera-
tive"), and discriminative. They will have general utility for 
other novelty detection tasks as well, but they are specifi-
cally designed with onboard constraints and large candidate 
feature spaces in mind. The first novelty detection method is 
a distance-based k-means clustering approach. Initially, all 
available rock data is clustered into a specified number (k) of 
classes. The novelty of any rock is then the distance of the 
rock feature vector to the nearest center of any of the k clus-
ters. The greater the rock’s distance is to the nearest center, 
the higher the novelty ranking assigned to the rock. The sec-
ond technique is a probability-based Gaussian mixture model, 
which attempts to model the probability density over the 
feature space. In this approach, the novelty of a rock is in-
versely proportional to the resulting probability of that rock 
being generated by the model learned on previous rock data. 
The final method is a discrimination-based kernel one-class 
classifier approach. Here we treat all previous rock data as 
the "positive class" and learn the discriminant boundary that 
encloses all that data in the feature space. We essentially 
consider the previous rock data as a cloud scatter in some D-
dimensional space, where D is the number of features. The 
algorithm learns the boundary of that cloud, so that future 
rock data that falls farther outside the cloud boundary is con-
sidered more novel.  

Representative Target: One of the objectives for rover 
traverse science is to gain an understanding of the region being 
traversed. To meet this objective, the downlink back to Earth 
should include information on rocks that are typical for a 
region, and not just information on interesting and unusual 
rocks. A region is likely populated by several types of rocks 

with each rock type having a different abundance.  If uniform 
sampling is employed for downlink image selection, as op-
posed to our autonomous onboard selection process, the 
downlinked set will be biased towards the dominant class of 
rock present. This situation may result in smaller classes not 
being represented at all in the downlinked data.   

To provide an understanding of the typical characteristics 
of a region, rocks are first clustered into groups with similar 
properties. The data is then prioritized to ensure that repre-
sentative rocks from each class are sampled. The rocks are 
clustered into groups based on the features extracted from the 
image data for each rock. To determine the classes, the prop-
erty values are concatenated together to form a feature vector, 
and a weight is assigned to the importance of each property. 
Different weight assignments can be used as a function of the 
particular properties that are of interest. For example, albedo 
and texture are typically used to distinguish types of rocks, 
but rock size may be used if sorting is of interest. Unsuper-
vised clustering is then used to separate the feature vectors 
into similar classes. We currently employ k-means due to its 
relatively low computational requirements, although any 
unsupervised method could be used. For each class of rocks, 
we find the most representative rock in the class, i.e., the 
single rock in any image that is closest to the mean of the set. 
We give a high priority to the image containing this rock. The 
optimal number of classes can be determined using cross-
validation techniques [5]. Since some classes of rock may be 
more common than others, this prioritization method ensures 
that all classes of rocks in a set of images are represented. 
Without prioritizing the rocks by grouping them into classes, 
a disproportionate number of rocks from the most common 
classes are more likely to be represented in the data and 
classes that have fewer members may not be represented at 
all in the downlinked data. 

In the future we will use the spatial location of the rocks 
in addition to their property values to enable expanded 
analyses, including characterizing local surface regions and 
sorting, which requires size and location information. Finally, 
prioritization can be used for more than just data downlink 
decisions. It can also be used for opportunistic science. Tar-
gets of high science value can be identified for additional in-
strument measurements. Prioritization that calls for oppor-
tunistic science is a wasted capability without a method of 
re-sequencing the rover, or orbital spacecraft, to obtain the 
additional scientific observations requested. This ability for 
real-time opportunistic science requires integrating the priori-
tization module with the onboard planning and scheduling 
system. We are in the process of including this integration. 
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